Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
BMJ Open Ophthalmol ; 7(1)2022 06.
Article in English | MEDLINE | ID: covidwho-2053227

ABSTRACT

OBJECTIVE: To analyse corneal tissues from asymptomatic donors with a postmortem nasopharyngeal swab tested positive for the presence of SARS-CoV-2 RNA, and therefore, understand the role that corneal transplantation may have in viral transmission. METHODS AND ANALYSIS: Between March 2020 and October 2021, 101 corneas (out of 8154 collected in Italy) from 51 donors (out of a total of 4155 Italian donors) positive for SARS-CoV-2 after postmortem nasopharyngeal swab tests were analysed for the presence of SARS-CoV-2 RNA through real-time RT-PCR. When available, the corneal tissue storage media were also assessed. Corneas and/or storage media with confirmed presence of SARS-CoV-2 RNA were further investigated by isolating SARS-CoV-2 virions, which were used to infect VeroE6 target cells. RESULTS: Only N=4 corneas and/or storage media out of 101 showed presence of SARS-CoV-2 RNA. No VeroE6 cell infection was detected with viral isolates, thus suggesting no presence of SARS-CoV-2 virions in corneal specimens and storage media. CONCLUSIONS: The presence of SARS-CoV-2 in cornea specimens would seem to be more likely due to prolonged detection of RNA rather than to active viral replication, with very low risk of infectivity and transmission through keratoplasty.


Subject(s)
COVID-19 , COVID-19/epidemiology , Cornea/chemistry , Humans , Pandemics , RNA, Viral/genetics , SARS-CoV-2/genetics
2.
Nat Commun ; 13(1): 5870, 2022 10 05.
Article in English | MEDLINE | ID: covidwho-2050380

ABSTRACT

Population testing remains central to COVID-19 control and surveillance, with countries increasingly using antigen tests rather than molecular tests. Here we describe a SARS-CoV-2 variant that escapes N antigen tests due to multiple disruptive amino-acid substitutions in the N protein. By fitting a multistrain compartmental model to genomic and epidemiological data, we show that widespread antigen testing in the Italian region of Veneto favored the undetected spread of the antigen-escape variant compared to the rest of Italy. We highlight novel limitations of widespread antigen testing in the absence of molecular testing for diagnostic or confirmatory purposes. Notably, we find that genomic surveillance systems which rely on antigen population testing to identify samples for sequencing will bias detection of escape antigen test variants. Together, these findings highlight the importance of retaining molecular testing for surveillance purposes, including in contexts where the use of antigen tests is widespread.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , COVID-19/epidemiology , Humans , Italy/epidemiology , SARS-CoV-2/genetics
3.
Genome Med ; 14(1): 61, 2022 06 10.
Article in English | MEDLINE | ID: covidwho-1951320

ABSTRACT

BACKGROUND: The continuous emergence of SARS-CoV-2 variants of concern (VOC) with immune escape properties, such as Delta (B.1.617.2) and Omicron (B.1.1.529), questions the extent of the antibody-mediated protection against the virus. Here we investigated the long-term antibody persistence in previously infected subjects and the extent of the antibody-mediated protection against B.1, B.1.617.2 and BA.1 variants in unvaccinated subjects previously infected, vaccinated naïve and vaccinated previously infected subjects. METHODS: Blood samples collected 15 months post-infection from unvaccinated (n=35) and vaccinated (n=41) previously infected subjects (Vo' cohort) were tested for the presence of antibodies against the SARS-CoV-2 spike (S) and nucleocapsid (N) antigens using the Abbott, DiaSorin, and Roche immunoassays. The serum neutralising reactivity was assessed against B.1, B.1.617.2 (Delta), and BA.1 (Omicron) SARS-CoV-2 strains through micro-neutralisation. The antibody titres were compared to those from previous timepoints, performed at 2- and 9-months post-infection on the same individuals. Two groups of naïve subjects were used as controls, one from the same cohort (unvaccinated n=29 and vaccinated n=20) and a group of vaccinated naïve healthcare workers (n=61). RESULTS: We report on the results of the third serosurvey run in the Vo' cohort. With respect to the 9-month time point, antibodies against the S antigen significantly decreased (P=0.0063) among unvaccinated subjects and increased (P<0.0001) in vaccinated individuals, whereas those against the N antigen decreased in the whole cohort. When compared with control groups (naïve Vo' inhabitants and naïve healthcare workers), vaccinated subjects that were previously infected had higher antibody levels (P<0.0001) than vaccinated naïve subjects. Two doses of vaccine elicited stronger anti-S antibody response than natural infection (P<0.0001). Finally, the neutralising reactivity of sera against B.1.617.2 and BA.1 was 4-fold and 16-fold lower than the reactivity observed against the original B.1 strain. CONCLUSIONS: These results confirm that vaccination induces strong antibody response in most individuals, and even stronger in previously infected subjects. Neutralising reactivity elicited by natural infection followed by vaccination is increasingly weakened by the recent emergence of VOCs. While immunity is not completely compromised, a change in vaccine development may be required going forward, to generate cross-protective pan-coronavirus immunity in the global population.


Subject(s)
COVID-19 , Viral Vaccines , Antibodies, Viral , COVID-19/prevention & control , Humans , SARS-CoV-2 , Vaccination
4.
JCI Insight ; 7(10)2022 05 23.
Article in English | MEDLINE | ID: covidwho-1794307

ABSTRACT

T cells play a prominent role in orchestrating the immune response to viral diseases, but their role in the clinical presentation and subsequent immunity to SARS-CoV-2 infection remains poorly understood. As part of a population-based survey of the municipality of Vo', Italy, conducted after the initial SARS-CoV-2 outbreak, we sampled the T cell receptor (TCR) repertoires of the population 2 months after the initial PCR survey and followed up positive cases 9 and 15 months later. At 2 months, we found that 97.0% (98 of 101) of cases had elevated levels of TCRs associated with SARS-CoV-2. T cell frequency (depth) was increased in individuals with more severe disease. Both depth and diversity (breadth) of the TCR repertoire were positively associated with neutralizing antibody titers, driven mostly by CD4+ T cells directed against spike protein. At the later time points, detection of these TCRs remained high, with 90.7% (78 of 96) and 86.2% (25 of 29) of individuals having detectable signal at 9 and 15 months, respectively. Forty-three individuals were vaccinated by month 15 and showed a significant increase in TCRs directed against spike protein. Taken together, these results demonstrate the central role of T cells in mounting an immune defense against SARS-CoV-2 that persists out to 15 months.


Subject(s)
COVID-19 , CD4-Positive T-Lymphocytes , Humans , Receptors, Antigen, T-Cell/metabolism , SARS-CoV-2 , Spike Glycoprotein, Coronavirus
5.
Sci Rep ; 12(1): 5736, 2022 04 06.
Article in English | MEDLINE | ID: covidwho-1778634

ABSTRACT

The aims of this study were to characterize new SARS-CoV-2 genomes sampled all over Italy and to reconstruct the origin and the evolutionary dynamics in Italy and Europe between February and June 2020. The cluster analysis showed only small clusters including < 80 Italian isolates, while most of the Italian strains were intermixed in the whole tree. Pure Italian clusters were observed mainly after the lockdown and distancing measures were adopted. Lineage B and B.1 spread between late January and early February 2020, from China to Veneto and Lombardy, respectively. Lineage B.1.1 (20B) most probably evolved within Italy and spread from central to south Italian regions, and to European countries. The lineage B.1.1.1 (20D) developed most probably in other European countries entering Italy only in the second half of March and remained localized in Piedmont until June 2020. In conclusion, within the limitations of phylogeographical reconstruction, the estimated ancestral scenario suggests an important role of China and Italy in the widespread diffusion of the D614G variant in Europe in the early phase of the pandemic and more dispersed exchanges involving several European countries from the second half of March 2020.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , Communicable Disease Control , Europe/epidemiology , Genome, Viral/genetics , Humans , Italy/epidemiology , Phylogeography , SARS-CoV-2/genetics
6.
Viruses ; 14(2)2022 02 15.
Article in English | MEDLINE | ID: covidwho-1687058

ABSTRACT

In February 2020, the municipality of Vo', a small town near Padua (Italy) was quarantined due to the first coronavirus disease 19 (COVID-19)-related death detected in Italy. To investigate the viral prevalence and clinical features, the entire population was swab tested in two sequential surveys. Here we report the analysis of 87 viral genomes, which revealed that the unique ancestor haplotype introduced in Vo' belongs to lineage B, carrying the mutations G11083T and G26144T. The viral sequences allowed us to investigate the viral evolution while being transmitted within and across households and the effectiveness of the non-pharmaceutical interventions implemented in Vo'. We report, for the first time, evidence that novel viral haplotypes can naturally arise intra-host within an interval as short as two weeks, in approximately 30% of the infected individuals, regardless of symptom severity or immune system deficiencies. Moreover, both phylogenetic and minimum spanning network analyses converge on the hypothesis that the viral sequences evolved from a unique common ancestor haplotype that was carried by an index case. The lockdown extinguished both the viral spread and the emergence of new variants.


Subject(s)
Family Characteristics , Genome, Viral , Haplotypes , Host Microbial Interactions/genetics , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , COVID-19/epidemiology , COVID-19/transmission , COVID-19/virology , Communicable Disease Control/methods , Evolution, Molecular , Humans , Italy/epidemiology , Mutation , Phylogeny , SARS-CoV-2/classification
7.
Sci Rep ; 11(1): 24467, 2021 12 28.
Article in English | MEDLINE | ID: covidwho-1596771

ABSTRACT

Mobility restrictions are successfully used to contain the diffusion of epidemics. In this work we explore their effect on the epidemic growth by investigating an extension of the Susceptible-Infected-Removed (SIR) model in which individual mobility is taken into account. In the model individual agents move on a chessboard with a Lévy walk and, within each square, epidemic spreading follows the standard SIR model. These simple rules allow to reproduce the sub-exponential growth of the epidemic evolution observed during the Covid-19 epidemic waves in several countries and which cannot be captured by the standard SIR model. We show that we can tune the slowing-down of the epidemic spreading by changing the dynamics of the agents from Lévy to Brownian and we investigate how the interplay among different containment strategies mitigate the epidemic spreading. Finally we demonstrate that we can reproduce the epidemic evolution of the first and second COVID-19 waves in Italy using only 3 parameters, i.e , the infection rate, the removing rate, and the mobility in the country. We provide an estimate of the peak reduction due to imposed mobility restrictions, i. e., the so-called flattening the curve effect. Although based on few ingredients, the model captures the kinetic of the epidemic waves, returning mobility values that are consistent with a lock-down intervention during the first wave and milder limitations, associated to a weaker peak reduction, during the second wave.


Subject(s)
COVID-19/epidemiology , Models, Theoretical , Movement , COVID-19/virology , Epidemics , Humans , Italy/epidemiology , SARS-CoV-2/isolation & purification
8.
Pathog Glob Health ; 116(2): 128-136, 2022 03.
Article in English | MEDLINE | ID: covidwho-1462228

ABSTRACT

The COVID-19 pandemic has been threatening the healthcare and socioeconomic systems of entire nations. While population-based surveys to assess the distribution of SARS-CoV-2 infection have become a priority, pre-existing longitudinal studies are ideally suited to assess the determinants of COVID-19 onset and severity.The Cooperative Health Research In South Tyrol (CHRIS) study completed the baseline recruitment of 13,393 adults from the Venosta/Vinschgau rural district in 2018, collecting extensive phenotypic and biomarker data, metabolomic data, densely imputed genotype and whole-exome sequencing data.Based on CHRIS, we designed a prospective study, called CHRIS COVID-19, aimed at: 1) estimating the incidence of SARS-CoV-2 infections; 2) screening for and investigating the determinants of incident infection among CHRIS participants and their household members; 3) monitoring the immune response of infected participants prospectively.An online screening questionnaire was sent to all CHRIS participants and their household members. A random sample of 1450 participants representative of the district population was invited to assess active (nasopharyngeal swab) or past (serum antibody test) infections. We prospectively invited for complete SARS-CoV-2 testing all questionnaire completers gauged as possible cases of past infection and their household members. In positive tested individuals, antibody response is monitored quarterly for one year. Untested and negative participants receive the screening questionnaire every four weeks until gauged as possible incident cases or till the study end.Originated from a collaboration between researchers and community stakeholders, the CHRIS COVID-19 study aims at generating knowledge about the epidemiological, molecular, and genetic characterization of COVID-19 and its long-term sequelae.


Subject(s)
COVID-19 , Adult , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19 Testing , Humans , Pandemics/prevention & control , Prospective Studies , SARS-CoV-2/genetics
9.
Front Med (Lausanne) ; 8: 714221, 2021.
Article in English | MEDLINE | ID: covidwho-1441117

ABSTRACT

Background: The impact of viral burden on severity and prognosis of patients hospitalized for Coronavirus Disease 2019 (COVID-19) is still a matter of debate due to controversial results. Herein, we sought to assess viral load in the nasopharyngeal swab and its association with severity score indexes and prognostic parameters. Methods: We included 127 symptomatic patients and 21 asymptomatic subjects with a diagnosis of SARS-CoV-2 infection obtained by reverse transcription polymerase chain reaction and presence of cycle threshold. According to the level of care needed during hospitalization, the population was categorized as high-intensity (HIMC, n = 76) or low intensity medical care setting (LIMC, n = 51). Results: Viral load did not differ among asymptomatic, LIMC, and HIMC SARS-CoV-2 positive patients [4.4 (2.9-5.3) vs. 4.8 (3.6-6.1) vs. 4.6 (3.9-5.7) log10 copies/ml, respectively; p = 0.31]. Similar results were observed when asymptomatic individuals were compared to hospitalized patients [4.4 (2.9-5.3) vs. 4.68 (3.8-5.9) log10 copies/ml; p = 0.13]. When the study population was divided in High (HVL, n = 64) and Low Viral Load (LVL, n = 63) group no differences were observed in disease severity at diagnosis. Furthermore, LVL and HVL groups did not differ with regard to duration of hospital stay, number of bacterial co-infections, need for high-intensity medical care and number of deaths. The viral load was not an independent risk factor for HIMC in an adjusted multivariate regression model (OR: 1.59; 95% CI: 0.46-5.55, p = 0.46). Conclusions: Viral load at diagnosis is similar in asymptomatic and hospitalized patients and is not associated with either worse outcomes during hospitalization. SARS CoV-2 viral load might not be the right tool to assist clinicians in risk-stratifying hospitalized patients.

10.
Materials (Basel) ; 14(9)2021 Apr 29.
Article in English | MEDLINE | ID: covidwho-1389429

ABSTRACT

We report on the design, characterization and validation of a spherical irradiation system for inactivating SARS-CoV-2, based on UV-C 275 nm LEDs. The system is designed to maximize irradiation intensity and uniformity and can be used for irradiating a volume of 18 L. To this aim: (i) several commercially available LEDs have been acquired and analyzed; (ii) a complete optical study has been carried out in order to optimize the efficacy of the system; (iii) the resulting prototype has been characterized optically and tested for the inactivation of SARS-CoV-2 for different exposure times, doses and surface types; (iv) the result achieved and the efficacy of the prototype have been compared with similar devices based on different technologies. Results indicate that a 99.9% inactivation can be reached after 1 min of treatment with a dose of 83.1 J/m2.

13.
Nat Commun ; 12(1): 4383, 2021 07 19.
Article in English | MEDLINE | ID: covidwho-1317806

ABSTRACT

In February and March 2020, two mass swab testing campaigns were conducted in Vo', Italy. In May 2020, we tested 86% of the Vo' population with three immuno-assays detecting antibodies against the spike and nucleocapsid antigens, a neutralisation assay and Polymerase Chain Reaction (PCR). Subjects testing positive to PCR in February/March or a serological assay in May were tested again in November. Here we report on the results of the analysis of the May and November surveys. We estimate a seroprevalence of 3.5% (95% Credible Interval (CrI): 2.8-4.3%) in May. In November, 98.8% (95% Confidence Interval (CI): 93.7-100.0%) of sera which tested positive in May still reacted against at least one antigen; 18.6% (95% CI: 11.0-28.5%) showed an increase of antibody or neutralisation reactivity from May. Analysis of the serostatus of the members of 1,118 households indicates a 26.0% (95% CrI: 17.2-36.9%) Susceptible-Infectious Transmission Probability. Contact tracing had limited impact on epidemic suppression.


Subject(s)
Antibodies, Viral/immunology , COVID-19 Testing/methods , COVID-19/immunology , COVID-19/transmission , SARS-CoV-2/immunology , Serologic Tests/methods , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19 Nucleic Acid Testing , Contact Tracing , Female , Humans , Immunoglobulin G/blood , Immunoglobulin M/blood , Italy/epidemiology , Male , Nucleocapsid , Seroepidemiologic Studies , Spike Glycoprotein, Coronavirus/immunology
14.
Biomolecules ; 11(6)2021 05 26.
Article in English | MEDLINE | ID: covidwho-1310053

ABSTRACT

Angiotensin-converting enzyme 2 (ACE-2) is the main cell entry receptor for severe acute respiratory syndrome-Coronavirus-2 (SARS-CoV-2), thus playing a critical role in causing Coronavirus disease 2019 (COVID-19). The role of smoking habit in the susceptibility to infection is still controversial. In this study we correlated lung ACE-2 gene expression with several clinical/pathological data to explore susceptibility to infection. This is a retrospective observational study on 29 consecutive COVID-19 autopsies. SARS-CoV-2 genome and ACE-2 mRNA expression were evaluated by real-time polymerase chain reaction in lung tissue samples and correlated with several data with focus on smoking habit. Smoking was less frequent in high than low ACE-2 expressors (p = 0.014). A Bayesian regression also including age, gender, hypertension, and virus quantity confirmed that smoking was the most probable risk factor associated with low ACE-2 expression in the model. A direct relation was found between viral quantity and ACE-2 expression (p = 0.028). Finally, high ACE-2 expressors more frequently showed a prevalent pattern of vascular injury than low expressors (p = 0.049). In conclusion, ACE-2 levels were decreased in the lung tissue of smokers with severe COVID-19 pneumonia. These results point out complex biological interactions between SARS-CoV-2 and ACE-2 particularly concerning the aspect of smoking habit and need larger prospective case series and translational studies.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , COVID-19/pathology , Lung/metabolism , Aged , Aged, 80 and over , Angiotensin-Converting Enzyme 2/genetics , Bayes Theorem , COVID-19/virology , Female , Humans , Lung/pathology , Male , Real-Time Polymerase Chain Reaction , Retrospective Studies , Risk Factors , SARS-CoV-2/isolation & purification , Smokers
15.
Front Med (Lausanne) ; 8: 637872, 2021.
Article in English | MEDLINE | ID: covidwho-1191689

ABSTRACT

Purpose: The hypothesis of the study was that a multidisciplinary approach involving experienced specialists in diffuse parenchymal lung disease might improve the diagnosis of patients with COVID-19 pneumonia. Methods: Two pulmonologists, two radiologists, and two pathologists reviewed 27 patients affected by severe COVID-19 pneumonia as the main diagnosis made by non-pulmonologists. To evaluate whether the contribution of specialists, individually and/or in combination, might modify the original diagnosis, a three-step virtual process was planned. The whole lung examination was considered the gold standard for the final diagnosis. The probability of a correct diagnosis was calculated using a model based on generalized estimating equations. The effectiveness of a multidisciplinary diagnosis was obtained by comparing diagnoses made by experienced pulmonologists with those made by non-pulmonologists. Results: In 19% of cases, the diagnosis of COVID-19-related death was mainly incorrect. The probability of a correct diagnosis increased strikingly from an undedicated clinician to an expert specialist. Every single specialist made significantly more correct diagnoses than any non-pulmonologist. The highest level of accuracy was achieved by the combination of 3 expert specialists (p = 0.0003). Conclusion: The dynamic interaction between expert specialists may significantly improve the diagnostic confidence and management of patients with COVID-19 pneumonia.

16.
Infection ; 49(6): 1341-1345, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1174038

ABSTRACT

PURPOSE: We report on the first identified cluster of the B.1.1.7 variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections in the northeast of Italy. METHODS: The cluster was recognized in January 2021 with an epidemiological started from the hospitalization of a 68-year-old man suffering from coronavirus disease 2019 (COVID-19) related pneumonia and we surprisingly found three families involved in the same cluster. RESULTS: We retrospectively rebuilt the pathway of infection and performed a virological analysis. CONCLUSION: This allow us to make clear the very high attack rate and the great infective capacity of this B.1.1.7 variant of SARS-CoV-2.


Subject(s)
COVID-19 , SARS-CoV-2 , Aged , Humans , Italy/epidemiology , Male , Retrospective Studies
17.
Nano Today ; 38: 101136, 2021 Jun.
Article in English | MEDLINE | ID: covidwho-1142162

ABSTRACT

Two-dimensional transition metal carbides/carbonitrides known as MXenes are rapidly growing as multimodal nanoplatforms in biomedicine. Here, taking SARS-CoV-2 as a model, we explored the antiviral properties and immune-profile of a large panel of four highly stable and well-characterized MXenes - Ti3C2Tx, Ta4C3T x , Mo2Ti2C3T x and Nb4C3T x . To start with antiviral assessment, we first selected and deeply analyzed four different SARS-CoV-2 genotypes, common in most countries and carrying the wild type or mutated spike protein. When inhibition of the viral infection was tested in vitro with four viral clades, Ti3C2T x in particular, was able to significantly reduce infection only in SARS-CoV-2/clade GR infected Vero E6 cells. This difference in the antiviral activity, among the four viral particles tested, highlights the importance of considering the viral genotypes and mutations while testing antiviral activity of potential drugs and nanomaterials. Among the other MXenes tested, Mo2Ti2C3T x also showed antiviral properties. Proteomic, functional annotation analysis and comparison to the already published SARS-CoV-2 protein interaction map revealed that MXene-treatment exerts specific inhibitory mechanisms. Envisaging future antiviral MXene-based drug nano-formulations and considering the central importance of the immune response to viral infections, the immune impact of MXenes was evaluated on human primary immune cells by flow cytometry and single-cell mass cytometry on 17 distinct immune subpopulations. Moreover, 40 secreted cytokines were analyzed by Luminex technology. MXene immune profiling revealed i) the excellent bio and immune compatibility of the material, as well as the ability of MXene ii) to inhibit monocytes and iii) to reduce the release of pro-inflammatory cytokines, suggesting an anti-inflammatory effect elicited by MXene. We here report a selection of MXenes and viral SARS-CoV-2 genotypes/mutations, a series of the computational, structural and molecular data depicting deeply the SARS-CoV-2 mechanism of inhibition, as well as high dimensional single-cell immune-MXene profiling. Taken together, our results provide a compendium of knowledge for new developments of MXene-based multi-functioning nanosystems as antivirals and immune-modulators.

18.
Pathog Glob Health ; 115(3): 203-207, 2021 05.
Article in English | MEDLINE | ID: covidwho-1137913

ABSTRACT

We describe the early phases of a COVID-19 epidemic in two contiguous Italian regions, Lombardy and Veneto, which were heavily and simultaneously hit by SARS-CoV-2 in Italy but showed markedly different disease outcome in terms of case fatality rate, SARS-CoV-2-attributable mortality and hospitalization. We discuss data limitations together with similarities and differences of the regional context possibly affecting COVID-19 control in the two regions. We conclude that the better COVID-19 outcome in Veneto was due, at least in part, to the adoption of a strategy of active search of asymptomatic SARS-CoV-2 infections (Reasoned Mass Testing), instead of a strategy strictly based on the detection of symptomatic cases.


Subject(s)
COVID-19 , Coronavirus Infections , Hospitalization , Humans , Italy/epidemiology , SARS-CoV-2
19.
J Pathol ; 254(2): 173-184, 2021 06.
Article in English | MEDLINE | ID: covidwho-1098912

ABSTRACT

Severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) pneumopathy is characterized by a complex clinical picture and heterogeneous pathological lesions, both involving alveolar and vascular components. The severity and distribution of morphological lesions associated with SARS-CoV-2 and how they relate to clinical, laboratory, and radiological data have not yet been studied systematically. The main goals of the present study were to objectively identify pathological phenotypes and factors that, in addition to SARS-CoV-2, may influence their occurrence. Lungs from 26 patients who died from SARS-CoV-2 acute respiratory failure were comprehensively analysed. Robust machine learning techniques were implemented to obtain a global pathological score to distinguish phenotypes with prevalent vascular or alveolar injury. The score was then analysed to assess its possible correlation with clinical, laboratory, radiological, and tissue viral data. Furthermore, an exploratory random forest algorithm was developed to identify the most discriminative clinical characteristics at hospital admission that might predict pathological phenotypes of SARS-CoV-2. Vascular injury phenotype was observed in most cases being consistently present as pure form or in combination with alveolar injury. Phenotypes with more severe alveolar injury showed significantly more frequent tracheal intubation; longer invasive mechanical ventilation, illness duration, intensive care unit or hospital ward stay; and lower tissue viral quantity (p < 0.001). Furthermore, in this phenotype, superimposed infections, tumours, and aspiration pneumonia were also more frequent (p < 0.001). Random forest algorithm identified some clinical features at admission (body mass index, white blood cells, D-dimer, lymphocyte and platelet counts, fever, respiratory rate, and PaCO2 ) to stratify patients into different clinical clusters and potential pathological phenotypes (a web-app for score assessment has also been developed; https://r-ubesp.dctv.unipd.it/shiny/AVI-Score/). In SARS-CoV-2 positive patients, alveolar injury is often associated with other factors in addition to viral infection. Identifying phenotypical patterns at admission may enable a better stratification of patients, ultimately favouring the most appropriate management. © 2021 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Subject(s)
COVID-19/diagnosis , COVID-19/virology , Machine Learning , Respiratory Distress Syndrome/etiology , SARS-CoV-2/pathogenicity , Vascular System Injuries/etiology , Aged , Aged, 80 and over , Female , Humans , Male , Respiratory Distress Syndrome/diagnosis , Respiratory Insufficiency/diagnosis , Respiratory Insufficiency/virology , Vascular System Injuries/diagnosis , Vascular System Injuries/virology
SELECTION OF CITATIONS
SEARCH DETAIL